

������� ������� ����
���������� ����

	������� �����������
�����������

����"� �����!
	������ ������

����� ��� ���� ������� ��������� ������������� ��� ����������

�����������"�����������
� ����������



iii

EXECUTIVE SUMMARY

OBJECTIVE

This report describes the Scalable Programming Environment (SPE), which provides program-
mers with a transparent way of creating scalable parallel applications for large-grained parallel com-
puter architectures.

APPROACH

The SPE was developed on the Intel Paragon to support the Hybrid Digital Optical Processor
(HyDOP), a real-time acoustic signal processing application for undersea surveillance, sponsored by
the Office of Naval Research (ONR-321). All the scalable and reconfigurable needs of HyDOP have
been incorporated in a library of general programming calls. The development and testing of the SPE
evolved as the HyDOP project dictated. The Intel Paragon was made available by the DoD HPC
Modernization Program.

The SPE was designed with generality in mind, so that in addition to meeting the needs of
HyDOP, it could be used in other similar types of applications. At least one other project has already
begun to use the SPE and is beginning to influence the SPE development.

RESULTS

The SPE, which has been designed primarily to support data-flow processing applications, allows
programs to be scaled to execute on any number of processing nodes while requiring no changes to
the compiled binary code. The user is provided with a set of high-level message-passing routines
which can be used to connect multiinstanced heterogeneous programs in a system. The SPE library
routines hide the intricacies of how the parallel programs communicate. The details of the connec-
tions are specified in text files. The SPE allows individual programs to be coded without knowledge
of other parts of the system and thus allows systems to be quickly built, modified, or scaled without
program recompilation.

At the time this report is being written, the SPE is still under development. All the significant
parts have been implemented and tested on an Intel Paragon XP/S 25. Although the current imple-
mentation interfaces to the operating system using Intel-specific NX calls, it should be portable to the
emerging Message Passing Interface standard or to other vendor-specific parallel operating system
interfaces based on message passing.

The SPE has been successfully used by the HyDOP project, and all newly developed HyDOP
programs are currently using the SPE. Use of the SPE has provided more rapid program development
and system integration. The current HyDOP subsystem is scalable and reconfigurable.

The SPE is also being evaluated for use in synthetic aperture radar (SAR) image-formation pro-
cessing for an ARPA-sponsored project. The goals of this project include demonstrating the ability to
perform SAR processing in real time on the Paragon in a scalable implementation which has potential
for portability to other parallel processors. It is expected that by using the SPE, the SAR development
time will be significantly reduced.



v

CONTENTS

EXECUTIVE SUMMARY iii. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.0 INTRODUCTION 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.0 USER INTERFACE 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1 SYSTEM DEFINITION FILE 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 PROGRAM DEFINITION FILE 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3 DATABASE STARTUP FILE 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.0 PORT-TO-PORT COMMUNICATION 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1 PARALLEL CONNECTIONS AND DECOMPOSITION 11. . . . . . . . . . . . . . . . . . . . 
3.2 INPUT PORT FIFO BUFFERS 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3 MESSAGE SYNCHRONIZATION 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4 CONTROL TYPE PORTS 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.5 DATA FLOW 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.0 PROGRAMMING INTERFACE 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.1 MESSAGE INTERFACE 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2 DATABASE INTERFACE 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3 REPORT INTERFACE 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4 PERFORMANCE MONITORING INTERFACE 26. . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.0 USING SPE 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.1 COMPILING AND LINKING AN SPE PROGRAM 27. . . . . . . . . . . . . . . . . . . . . . . 
5.2 RUNNING AN SPE SYSTEM 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

APPENDICES:

A. STRIPE ALGORITHM 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B. PREDEFINED REPORTS 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C. KEY WORDS 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
D. PROGRAMMING CALLS 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

FIGURES

1. Message-passing between heterogeneous programs. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2. Example of a System Definition file corresponding to the system shown in figure 3. 5. . 

3. Example showing an implementation of an acoustic receiver system. 5. . . . . . . . . . . . . . 

4. Possible Program Definition files for the receiver system of figure 2. 8. . . . . . . . . . . . . . 

5. Example of a Database Startup file. 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6. Striped 6�4 array. 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7. Internal message paths for communicating a 6�4 (6 row by 4 column) array. 12. . . . . . . 



vi

8. Input port two-dimensional FIFO. 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9. Memory addresses in two-dimensional FIFO. 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10. Control signals. 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11. Example FFT program illustrating the use of the basic SPE routines. 18. . . . . . . . . . . . . . 

12. Reuse of an SPE program. 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13. Usage of portwait(). 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14. EOS is daisy-chained through programs A, B, and C. 20. . . . . . . . . . . . . . . . . . . . . . . . . . 

15. Reconfiguring an output port. 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

16. Reconfiguring an input port. 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

17. Using a global database variable. 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

18. Program reuse controlled by the global database. 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

19. Specifying report() output using FRAMES mode. 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 



1

1.0 INTRODUCTION

The Scalable Programming Environment (SPE) is a programming environment and system interface
which was developed by the Hybrid Digital Optical Processor (HyDOP) project, sponsored by the Office
of Naval Research (ONR-321), to help build large scalable real-time systems in a research and testbed
environment. It provides the user with the ability to build and modify scalable systems quickly using both
function- and data-domain decomposition methods.

The SPE is a data-flow parallelizer. It loads and runs heterogeneous programs on multiple sets of nodes
and provides the scalable data-path connections needed for unrelated parallel programs to communicate.

Each program in a system, or an application, executes on a set of nodes and performs a different function.
Each node for a given program executes the same code, called an instance of the program. Each instance
of a program is expected to work on a different piece of the data for the given program. The SPE provides
the complex high-level message-passing routines which are needed to interconnect different programs
and instances of programs into a system.

Currently the parallel computing industry does not provide a standard set of high-level message-passing
routines to systematically interconnect multiinstanced heterogeneous programs in a system. These sys-
tems must be built with the details of the message passing visible to the application programmer. A multi-
instanced program is developed having to know the intricacies of the other programs it is connected to,
how the data are shaped on the other end of the communications path, how it will control the flow of the
data it receives, how it will buffer and transform the data once received, and how it will present the data
synchronously to multiple instances of itself.

Figure 1a shows the level of message-passing detail that a traditionally developed multiinstanced pro-
gram sees in a heterogeneous system. Each instance of program B must be aware of where it gets its data
from. Each instance must be aware of how the data is shaped at the other end. Each instance will have
to control the flow of data it receives (request messages). If program B receives messages from two or
more programs (not shown), then each instance will have to guarantee that it receives all messages in the
same order as other instances (controlled by the synchronizing messages).

This level of message-passing detail is beyond the level that an application programmer should have to
worry about. Furthermore, it is time-consuming and prohibits prototyping large systems or modifying
existing ones. It has kept system designs from emerging beyond the multi-instanced single-program stan-
dard predominantly used today.

The SPE has been developed to hide this level of message-passing detail. Figure 1b shows the view that
an SPE program sees when communicating data. Programs communicate with each other through ports

(a) Traditional view.


�	����� �PROGRAM A

	� ��

(b) SPE view.

PROGRAM A

�	����� �

����

REQUEST

DATA
SYNC

SYNC

Figure 1 .  Message-passing between heterogeneous programs.



2

connected by nets. Each is unaware of which program it talks to, the number of program instances at the
other end, the number of program instances at its own end, how the data are buffered, how the flow of
data is controlled, and how the data are synchronized.

Furthermore, because this level of detail is hidden from the program, new systems can be quickly built
and old ones quickly modified. Programs of a system can be scaled to run on any number of processing
nodes while requiring no changes to source code. Programs can be disconnected and reconnected in dif-
ferent ways to modify the function of a system.

The SPE message-passing routines have also been built to utilize resources efficiently. They have been
designed to overlap processing with communication, minimize buffer space, avoid extra copying of data,
and minimize the number of messages.

The SPE also includes other features useful in a parallel programming environment, such as dynamic run-
time control of diagnostic flags, execution parameters, performance monitoring, logging, and error
reporting.

The SPE provides:

1 A loader, which allows the user to define, load and run parallel programs on scalable
sets of nodes without the need to recompile. New systems can be built or modified by
changing a System Definition file. Systems can be easily run on varying numbers of
nodes to change system performance or meet constraints of the hardware system.

2 High-level message-passing routines to transfer data between programs running on
differing numbers of nodes. Multiple programs are interconnected with data-flow-
type connections, which hide the parallelism of the system within the connections.
The message-passing routines provide the scatter–gather-type operations needed to
pass data between programs running on differing numbers of nodes, provide internal
synchronization controls to make messages received by programs synchronous to
every instance of a program, and provide first in, first out (FIFO) data buffers so that
programs sending and receiving messages between each other can work on different-
size data blocks.

3 A debugging environment for performance monitoring, logging, and error reporting.
Debugging a parallel application requires a user interface which deals with multiple
programs and multiple instances of programs. The SPE provides report(), a
printf()-like call, which conditionally writes to standard output based on a run-time
parameter which can be unique to each report() call. Other routines allow the user to
view data as one image across all instances of a program.

4. A global database for the storage of symbolic names with their associated values.
Parameter values within a system can be stored through the user interface interac-
tively at run time so that application code need not be recompiled when values are
changed or new ones added.

At the time this report is being written, the SPE is still under development. All the significant parts have
been implemented and tested on an Intel Paragon XP/25. Although the current implementation interfaces
to the operating system using Intel-specific NX calls, it should be portable to the emerging Message Pass-
ing Interface standard or to other vendor-specific parallel operating system interfaces based on message
passing.

This report is organized as follows: Section 2 describes the user interface. It also describes the input text
files through which the user defines an SPE application. These files define each SPE program, describe



3

how they are connected to form a system, and initialize database variables that can be used by the pro-
grams. Examples are shown for each of the files, and rules are provided describing the grammar.

Section 3 describes how parallel programs communicate through ports. Different types of ports are
described which define how data are scattered and gathered when communicated between parallel pro-
grams. Also discussed is how data are buffered and synchronized between programs.

Section 4 describes the programming interface. Different SPE routines are described and examples are
provided showing how they are used in typical application.

Section 5, which will be expanded at a later date, shows how to compile and run an SPE application.

Appendix A shows the decomposition algorithm used by the SPE when gathering or scattering data over
a port. Appendix B shows predefined database variables which can be used by the user to obtain diagnos-
tic information from the SPE. Appendix C shows the key words recognized by the SPE when interpreting
the input text files. Appendix D defines each of the SPE programming calls.



4

2.0 USER INTERFACE

The user interfaces to the SPE through a System Definition file, Program Definition files, and Database
Startup files. The System Definition file and Program Definition files describe in two levels how each
program in a system interfaces to other programs in the system, and how each program interfaces to its
outside world. The Database Startup files are used by the SPE to enter variables into a global database
which can be used by each program in the system.

A user loads and runs an SPE application by executing spe . As shown in this command line description,
the spe  must be supplied with a path name to the System Definition file to run an application:

     %  spe –pn partition –on 0 –s sys_def_filename

            [[-d database_startup_filename]...] [-l log_filename]

            [-ident] [–identall] [–noload] [-portmap]

            [[–Dname]...] [[–Dname=def]...]

When spe  starts, it reads the System Definition file and Program Definition files. From these files, it
determines the configuration of the system, and loads the programs specified in the System Definition
file onto nodes of the target hardware. spe  then creates and downloads a unique port map to each pro-
gram instance in the system, which describes exactly how each program is connected to the other pro-
grams of the system. spe  then reads the Database startup files as specified on the command line and
initializes the SPE database. Once all the programs have received their unique port map and the SPE data-
base is initialized, the programs are ready to run. spe  interacts with the user through standard input and
output.

The spe  preprocesses all input files through a C preprocessor (GNU cpp ). This allows for file inclusion
and macro expansion as specified by the C language. The –Dname and –Dname=def arguments to spe
are passed directly onto the preprocessor and behave as described in the manual pages for cpp . The for-
mat of the input files, after preprocessing, must conform to the file formats described in the following
sections.

2.1 SYSTEM DEFINITION FILE

The System Definition file defines which programs are used in a system, how many nodes each program
will run on, and how programs are interconnected. spe  uses it to determine what programs will be loaded
on what nodes and to make a unique port map for each program instance. Figure 2 is an example of a
System Definition file.

The System Definition file specifies the path name to each program which is to be loaded by spe , the
number of nodes that each program will run on, and a path name to the Program Definition file for each
program which will be loaded. After reading the System Definition file, spe  then reads each Program
Definition file so that it can completely determine the port map for each program in the system. The port
map describes for each program instance what portion of the problem it will work on and how it is con-
nected to other programs in the system. spe  determines which portion of the data each program instance
will work on based on the Program Definition file for a program and based on the number of nodes the
program is specified to run on.



5

_________________________________________________________________________________________________
// File:  system/receiver
//
// Key  Word  #Nodes Program        Prog_Def_Path         Executable_Path
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   PROGRAM   1    ship            ”def/ship”            ”bin/ship”
   PROGRAM   1    hydrophone      ”def/hydrophone”      ”bin/hydrophone”
   PROGRAM   1    display         ”def/display”         ”bin/display”
   PROGRAM   10   beamformer      ”def/beamformer”      ”bin/beamformer”
   PROGRAM   15   matched_filter  ”def/matched_filter”  ”bin/matched_filter”

// Key  Word  Input_Port             Buffer
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   BUFFER    matched_filter:gain    1
   TRANSPOSE beamformer:d_in
   FUNNEL    display:elem

// Key  Word  Net_list
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   NET       ship:gain, matched_filter:gain, beamformer:gain
   NET       ship:ctl, beamformer:ctl
   NET       hydrophone:elem, beamformer:d_in, display:elem
   NET       beamformer:d_out, matched_filter:d_in

_________________________________________________________________________________________________

Figure 2 . Example of a System Definition file corresponding to the system shown in figure 3.

����	����� �������

	����

����������

����������

� ��

�

�

��

�

�

	
��� ���

����

��


���

��

����


���

��� �����

Figure 3 . Example showing an implementation of an acoustic receiver system.

The System Definition file also specifies the net lists which connect ports of each program in the system.
Programs communicate by passing input and output data through their ports. Data written to an output
port of a program are sent to the input ports on the net list to which the output port is connected. A program
is unaware of where its data go or where the data come from. This basic principle of the SPE allows users
to build modular systems which can be quickly modified or extended to meet the changing needs of an
application, and also promotes the reuse of software when new applications are built.

The System Definition file also specifies whether the data received by an input port need to be transposed,
funnelled, or additionally buffered to meet the input requirements of a program. Data must be transposed
when two connected programs need to process their data along different decomposition lines (such as
in a two-dimensional fast fourier transform (FFT)). Data must be funnelled when an input port consumes
less data than is provided by the output port to which it is connected. Additional buffering on an input
port may be needed to improve efficiency by increasing the amount of data the port can store.

The System Definition file of figure 2 is graphically represented in figure 3. Each box represents a differ-
ent program in the system, with a number in the lower right-hand corner indicating the number of nodes
it runs on. Each box has named ports through which it communicates data to other ports on its net. Input
ports which are additionally buffered, transposed, or funnelled have an attached bubble containing an
integer, the letter “T” or the letter “F,” respectively.



6

The rules for making a System Definition File are as follows:

1. Tabs and blanks are white spaces and are used to delimit lines into tokens interpreted
by the parser. Tokens are either key words, identifiers, integers, or strings. Backslash
(\) can be used to continue the end of a line. The rest of the line after a double forward
slash (//) is ignored as a comment.

2. Tokens are either key words, identifiers, integers, or strings. Key words which can be
used in the System Definition file include PROGRAM, BUFFER, FUNNEL, TRANS-
POSE, NET, and NA, and may be written in uppercase or lowercase letters. Identifiers
must be an allowable C language identifier, up to 31 characters, and cannot include
any of the key words found in Appendix C. Strings are enclosed in double quotes.

3. Each line must begin (ignoring white spaces) with PROGRAM, BUFFER, FUNNEL,
TRANSPOSE, or NET. These key words determine the format of the rest of the line.

4. Each line starting with PROGRAM specifies a program used in the system. The first
field is an integer specifying the number of nodes the program runs on. The second
field is an identifier specifying the symbolic name by which the program will be ref-
erenced in other parts of this file and the Database Startup files. The third field is a
string that specifies the path name to the Program Definition file. The fourth field is a
string that specifies the path name to the executable which runs on the nodes. The
path name can include program arguments (separated by spaces within the string).

5. Each line starting with BUFFER specifies an input port that needs extra buffering to
store data received on that port. The amount of buffering needed is expressed in inte-
ger blocks of input data (defined by the input port).

6. Each line starting with TRANSPOSE specifies an input port that must have its data
transposed when received.

7. Each line starting with FUNNEL specifies an input port that will consume less data
than produced by the output port it connects to. A variable in the database will control
what subset of the data is actually passed.

8. Each line starting with NET specifies a list of ports which are connected together in a
net. Ports are formatted as program:port , where program  and port  are
replaced by identifiers. The first port in a net must be an output port. The remaining
ports must be input ports. Ports do not have to be connected to a net. (There is an SPE
call that can check if a port is connected, portisconnected().)

9. Control  ports can only be connected to Control  ports. (Control  ports will be
described later in Section 3.4.)

10. The rows  dimension of all nontransposed and nonfunnelled input ports on a net must
agree with the output port to which it connects. The rows  dimension of all trans-
posed input ports on a net must agree with the columns  dimension of the output
port to which it connects. The rows  dimension of all funnelled input ports on a net
must be less than or equal to the rows of dimension of the output port to which it con-
nects. (The rows  and columns  dimensions of a port are described later.)

2.2 PROGRAM DEFINITION FILE
The Program Definition files define each program’s input and output. They are used, along with the Sys-
tem Definition file, to make a unique port map for each program and instance in the system. Each Program



7

Definition file defines only the input and output for its own program. There is no information in it defining
what the program is connected to. For each use of a program in a system, there can be a different Program
Definition file.

A Program Definition file defines each port of a program. A port is defined by its direction, configuration,
type, array size, element size, stripe overlap, and block overlap.

The port configuration labels the port’s definition as a configuration of the port. A port can have multiple
definitions, with a different configuration label for each. The configuration label is used by the program
to do dynamic reconfiguration of the port at run time (see Section 4.1.6). Each configuration for a port
must be specified on a separate line.

The port direction indicates whether a port is an input or output port. Other fields of a port’s definition
can or cannot be specified, depending on its direction.

The port type describes whether or how data will be decomposed among a program’s instances when data
are received or sent from a program, how the data will be buffered between programs, and how the flow
of data will be controlled between programs. The port type can be defined as striped, replicated, or control
(see Section 3.0 for a description of each).

The port array size defines the size of the data a port receives or sends. It is specified only for replicated
and striped port types. If specified, it defines a port by two dimensions, rows and columns. It need not
actually be two-dimensional, but to the SPE it must be described as such (i.e., [1][1] , [1][5],  and
[5][1]  are valid).

The port array size defines the size of the data before decomposition. That is, if the port is striped, then
each instance of a program will see only its portion of the data. If the port is replicated, then each instance
will see all the data. For striped ports, the data are decomposed across rows of the array (see Section 3.1).

If a port is replicated, then the rows dimension can be any value. If it is striped, then the number of rows
must be greater than or equal to the number of program instances.

The port element size defines the size of each element of the data when the port array size is specified.
The port element size will vary depending on the data which are processed (i.e., complex, real, etc.).

The port stripe overlap defines how many rows of overlap to use when decomposing data across a striped
input port. For striped ports, the SPE decomposes the data across rows of the array. When the data are
overlapped adjacent program instances share common rows of the data between them. The port stripe
overlap can be specified only for input striped ports. Appendix A specifies the algorithm used for decom-
posing overlapped and nonoverlapped data over program instances.

Shown in figure 4 are examples of Program Definition files that could have been used in the receiver sys-
tem example in figure 3.

The rules for making a Program Definition file are as follows:

1. Tabs and blanks are white spaces and are used to delimit lines into tokens interpreted
by the parser. Tokens are either key words, identifiers, integers, or strings. Backslash
(\) can be used to continue the end of a line. The rest of the line after a double forward
slash (//) is ignored as a comment.

2. Tokens are either key words, identifiers, integers, or strings. Key words which can be
used in Program Definition files include PORT, INPUT, OUTPUT, STRIPED, REP-
LICATED, CONTROL, and NA, and may be written in uppercase or lowercase letters.
Identifiers must be an allowable C language identifier, up to 31 characters, and cannot
include any of the key words found in Appendix C. Strings are enclosed in double
quotes.



8

_________________________________________________________________________________________________

// File : def/beamformer
//                 Config_  Direc              Array_       Elem_   Striped_   Block_
// Key  Word Port   uration  tion    Type       Size         Size    Ovlp       Ovlp
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   PORT    gain    standard INPUT   REPLICATED [1][1024]    4       NA         0
   PORT    ctl     standard INPUT   CONTROL    NA           NA      NA         NA
   PORT    d_in    standard INPUT   STRIPED    [100][1024]  8       0          0
   PORT    d_out   high_res OUTPUT  STRIPED    [100][512]   8       NA         NA
   PORT    d_out   low_res  OUTPUT  STRIPED    [50][512]    8       NA         NA

// File: def/hydrophone
//                 Config_  Direc              Array_       Elem_   Striped_   Block_
// Key Word Port   uration  tion    Type       Size         Size    Ovlp       Ovlp
// –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   PORT    elem    standard OUTPUT  STRIPED    [256][100]   8       NA         NA

// File: def/ship
//                 Config_  Direc              Array_       Elem_   striped_   Block_
// Key Word Port   uration  tion    Type       Size         Size    Ovlp       Ovlp
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   PORT    ctl     standard OUTPUT  CONTROL    NA           NA      NA         NA
   PORT    gain    standard OUTPUT  REPLICATED [1][1024]    4       NA         NA

// File: def/display
//                 Config_  Direc              Array_       Elem_   Striped_   Block_
// Key Word Port   uration  tion    Type       Size         Size    Ovlp       Ovlp
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   PORT    elem    standard INPUT   STRIPED    [4][512]     8       0          0

// File: def/matched_filter
//                 Config_  Direc              Array_       Elem_   Striped_   Block_
// Key Word Port   uration  tion    Type       Size         Size    Ovlp       Ovlp
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   PORT    d_in    high_res INPUT   STRIPED    [100][2048]  8       4          0
   PORT    d_in    low_res  INPUT   STRIPED    [50][2048]   8       4          0
   PORT    gain    standard INPUT   REPLICATED [1][1024]    4       NA         0

_________________________________________________________________________________________________

Figure 4 . Possible Program Definition files for the receiver system of figure 2.

3. Each line starting with PORT specifies the definition of a port. The fields are Port,
Configuration, Direction, Type, Array Size, Elem Size, Striped Ovlp, and Block Ovlp.
When a field is not allowed to be specified, it must contain NA, for “not applicable.”

4. The Port field is an identifier specifying the name by which the port will be refer-
enced.

5. The Configuration field is an identifier which identifies the port definition as one con-
figuration of the port. It must be unique for every definition of the port. The first defi-
nition of a port is the configuration which the SPE uses at load time. Alternate
configurations for the same port must have the same values for port Direction and
port Type. All other fields can be different.

6. The Direction field must be specified as INPUT or OUTPUT.

7. The Type field must be specified as CONTROL, STRIPED, or REPLICATED.

8. The Array Size and Elem Size fields must be and can only be specified for striped and
replicated ports. The format for the Array Size field when specified is
[rows][columns] , where rows  and columns  are integers. The Elem Size field
is the number of bytes for each element.

9. The Striped Ovlp field must be and can only be specified for input ports that are
striped. It must be an integer less than the number of rows of the input data.



9

10. The Block Ovlp field must be and can only be specified for input ports that are striped
or replicated. It must be an integer less than the number of columns of the input data.
Usage of the Block Ovlp field will be described later in Section 3.2.

2.3 DATABASE STARTUP FILE

The SPE provides a global database to store symbolic names with their associated values. Programs are
able to use the database to store such things as signal processing parameters, function control and
switches, display parameters and control flags, and report and logging flags. Typically these values are
found in include files and are shared among programs. If instead they are stored in a global database, then
when the values are changed or new ones added entire sets of programs need not be recompiled.

The other uses of the global database are to communicate values from the user interface to a program or
from one program to another. From the user interface, symbolic names and their associated values can
be assigned to different programs or to specific instances of programs. For example, one may want to set
a debugging or logging flag for a specific instance of a particular program, or may want to set a program
variable to different values for each use of the program (i.e., a program which can do multiple functions).

A program can also store or access data in the database from the program interface. However, unlike the
user interface, a program cannot assign a variable to a specific program or instance of a program. When
a program sets a variable in the database, it applies it to all programs which have registered the use of
that variable.

Programs tell the database that manager they are interested in a variable by registering for it. When a vari-
able in the database is modified via the program interface, that variable is updated automatically in all
programs which have registered for it. This means that programs within a system can be developed with-
out having to know the requirements of other programs. Details about the program interface will be dis-
cussed later in Section 4.2.

The user interface allows the user to provide to spe  a list of Database Startup files, which contain an
initial set of symbolic names and associated values for the system. The user can also, through the course
of a run, provide new names and values, or modify existing ones.

The Database Startup files contain a list of variables and associated values used by different programs
in the system. Because a system is a set of programs, and each program is a set of instances, a symbolic
name can have a different value for each program and instance in a system. Each line in the Database
Startup file allows a variable to be assigned to all instances of a specific program, to a specific instance
of a program, or to all instances of all programs. The same variable can be specified more than once (on
a different line). An example of a Database Startup file is given in figure 5.

_________________________________________________________________________________________________

// File: database/receiver
//
// Key Word Name                Type(Value)       Program(instance)
// –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   VAR      number_of_widgets   100               display            //integer
   VAR      narrow_band         TRUE              matched_filter     //integer
   VAR      speed_of_sound      1500.0                               //floating–point
   VAR      input_filename      ”sea_test1”       hydrophone         //string
   VAR      debug_stuff         OFF               beamformer         //report
   VAR      interesting_vars    FRAMES,gain,2,5   beamformer(0)      //report
   VAR      FUNNEL.display.elem 4,47,81,89                           //funnel

_________________________________________________________________________________________________

Figure 5 . Example of a Database Startup file.



10

The type of value which can be assigned to database variables are integer, floating-point, string, report,
and funnel. Integers must be specified either as an integer without a decimal point (e.g., 100) or as TRUE
or FALSE. Floating-point values contain a decimal point (e.g., 1500.0) or an exponent (e.g., 1e+3) or
both; their type is internally represented as a double. Strings are enclosed in double quotes (e.g.,
“sea_test1”). report is a special type which is specified either as ON or OFF or as a list of four compo-
nents: FRAMES, portname, startframe, and endframe. funnel is a special type which is specified as a list
of integers. The report and funnel types will be explained in more detail in later sections. With the excep-
tion of the special types, structures or arrays cannot be assigned through the user interface to variables
in the database.

The rules for making a Database Startup file are as follows:

1. Tabs and blanks are white spaces and are used to delimit lines into tokens interpreted
by the parser. Tokens are either key words, identifiers, integers, or strings. Backslash
(\) can be used to continue the end of a line. The rest of the line after a double forward
slash (//) is ignored as a comment.

2. Tokens are either key words, identifiers, integers, reals, or strings. Key words which
can be used in Database Startup files include VAR, TRUE, FALSE, ON, OFF,
FRAMES, and FUNNEL, and may be written in uppercase or lowercase letters. Identi-
fiers must be an allowable C language identifier, up to 31 characters, and cannot
include any of the key words found in Appendix C. Integers must be specified either
as an integer without a decimal point (e.g., 100) or as TRUE or FALSE (defined as 1
and 0, respectively). Floating-point values contain a decimal point (e.g., 1500.0) or an
exponent (e.g., 1e+3) or both; their type is internally represented as a double. Strings
are enclosed in double quotes.

3. Each line starting with VAR declares and initializes a variable to be put in the SPE
Database. The first and second fields specify the variable name and value. The value
specified must be of the type integer, floating-point, string, report, or funnel. The last
field optionally specifies the program or program and instance the variable is intended
for. It can be left empty, indicating that the variable is intended for everyone, or con-
tain a program name, indicating that the variable is intended for all instances of a pro-
gram, or contain the specific program and instance the variable is intended for.
Program names must match those used in the System Definition file. If the variable
type is funnel, then the last field is not specified (left blank).



11

3.0 PORT-TO-PORT COMMUNICATION

3.1 PARALLEL CONNECTIONS AND DECOMPOSITION

The SPE allows ports to be specified as striped or replicated. These port types tell the SPE how it should
decompose the data it transfers between ports of programs of multiple instances. When the SPE transfers
data to an input port that is replicated, then all instances of the receiving program will be given the same
data. When the SPE transfers data from an output port that is replicated, then each instance of the sending
program must provide the same data. When the SPE transfers data to an input port that is striped, then
each instance will be given a different portion of the data (can be overlapping). When the SPE transfers
data from an output port that is striped, then each instance of the sending program will provide a different
portion of the data (cannot be overlapping). The SPE can transfer data between ports of similar or dissimi-
lar types.

The size of the data communicated over a striped or replicated port must be defined by the user in two
dimensions, rows and columns. The data do not actually have to be two-dimensional, but to the SPE it
must be described as such ( i.e., [1][1], [1][5], and [5][1] are valid). When the SPE transfers data to a
striped port of a program of multiple instances, it divides the data along its row dimension. The data are
not decomposed across the column dimension. The algorithm divides the data as equally as possible into
row-contiguous portions (see Appendix A.). Figure 6 shows how a 6�4 array of data would be striped
across programs of 3 and 2 instances.

�������� �

� � � �

�

	

�




�

�
�������� �

�������� �

�������� �

� � � �
�

	

�




�

�

�������� �

���� �� ���������� ���� �� ����������

Figure 6 . Striped 6x4 array.

When communicating data between programs, the SPE must know how the data are decomposed at the
sending and receiving ends of a connection. For a simple two-port connection, the SPE must be able to
handle eight basic types of connections: striped–striped, striped–replicated, replicated–striped, repli-
cated–replicated, striped–transposed–striped, striped–transposed–replicated, replicated–transposed–
striped, and replicated–transposed-replicated. Figure 7 shows what the communication paths might be
for each type of connection. The examples show the sending program running on 3 nodes and the receiv-
ing program running on 2 nodes. The data which are communicated are in a 6�4 array. The extent of
the data communicated on each path is shown as [rows][columns].

One can see that even for these simple cases, the level of detail is quite complex. The SPE for each pro-
gram instance must know where it is sending or getting its data and how it will scatter or gather its data.
Each instance within a program will operate differently to communicate its portion of the data. Also, if
the sending or receiving programs are scaled to run on a different number of nodes, or if additional ports
are added to the net, then the paths will change.



12

(a) Striped–striped. (b) Striped–replicated. (c) Replicated–striped.

(d) Replicated–replicated. (e) Striped–transposed–striped. (f) Striped–transposed–
      replicated.

(g) Replicated–transposed–
       striped.

(h) Replicated–transposed–
       replicated.

[2–3][2–3]

[2–3][0–1]

[0–1][2–3]

[0–1][0–1]

[4–5][2–3]

[4–5][0–1]

[2–3][0–3]

[2–3][0–3]

[0–1][0–3]

[0–1][0–3]

[4–5][0–3]

[4–5][0–3]

[2–3][0–3]

[2–3][0–3]

[0–1][0–3]

[0–1][0–3]

[4–5][0–3]

[4–5][0–3]

[0–5][0–1]

[0–5][2–3]

[0–2][0–3]

[3–5][0–3]

[0–5][0–3]

[0–5][0–3]

[0–5][0–3]

[0–5][0–3]

[0–1][0–3]

[4–5][0–3]

[2][0–3]

[3][0–3]

Figure 7 . Internal message paths for communicating a 6x4 (t row by 4 column) array.

A program should not have to deal with this level of detail, and indeed this is something which is provided
for and kept hidden by the SPE. A program should not be concerned with where it is getting or sending
its data, how the data is decomposed at the other end, or even what instance of the program it is. The only
thing a program should need to know is what portion of the data it works on and must produce.

Output and input ports can also be connected through funnels. A funnel connects an input port to an output
port whose row dimension is greater than its own dimension. The user specifies in a Database Startup
file which rows of data are actually passed between the sender and receiver. There are four types of con-
nections which can use a funnel: striped–funnelled–striped, striped–funnelled–replicated, replicated–
funnelled–striped, replicated–funnelled–replicated. These are connected with the same type paths as the
nontransposed-type connections shown earlier. Funnel and transpose connections cannot be used
together.

To specify what rows are connected through a funnel, the user must create a database variable of the name
FUNNEL.program.port, where program and port are replaced by the program name and input port name
to which the funnel is attached. The user assigns to this variable an array of integers containing the row
indices of the data which are connected through the funnel. The number of integers specified must be
equal to the row dimension of the input port. Shown below is the funnel database variable which was used
in our example system:

VAR      FUNNEL.display.elem   4,47,81,89

3.2 INPUT PORT FIFO BUFFERS
Another feature that the SPE provides is that two programs interconnected can work on different-size data
blocks. The SPE requires that the row dimension of each input port on a net agree with the output port



13

to which it connects, but allows the column dimension of each to be different. The SPE can allow this
by providing a FIFO buffer on each input port which stores the data when the data are received. The FIFO
buffer is a two-dimensional buffer which performs the FIFO operation along the columns dimension of
the buffer. Since the communicated data is two-dimensional, the FIFO buffer must also be two-dimen-
sional. Figure 8 shows the operation performed by the FIFO buffer.

����� ����� �������� ����� ����

����� ����� ���� ��� ����

�������

����

Figure 8 . Input port two-dimensional FIFO.

The implementation of two-dimensional FIFO buffers is not straightforward because the physical
memory of a computer is accessible in only one dimension (every memory location is accessed by one
address). To understand this point, consider figure 9.

����� ����� �������

�

�




�

�

�

�

�

��

�

	

��

��

��

��

��

�	

��

��

�


��

��

��

��

�

�




�

�

�

�

�

��

�

	

��

��

��

��

��

�	

��

����� ����� �����

Figure 9 . Memory addresses in two-dimensional FIFO.

The 3�4 element boxes at the top of the figure represent the data being put into the FIFO buffer. The
3�3 element boxes at the bottom of the figure represent the data being removed from the FIFO buffer.
(Looking back at figure 7a, we see this represents the data sent along the top two paths.) The number in
each box represents the address where each element is stored. One can see that if the elements of the input
FIFO blocks are stored contiguously in memory, then the elements of the output FIFO blocks will have
to be read from noncontiguous memory locations. For instance, the first block removed is read from
addresses 0, 1, 2, 4, 5, 6, 8, 9, and 10. Once again, this level of detail is beyond what an application pro-
gram should be concerned with and is a feature provided by the SPE.

The SPE also allows the blocks of data taken from a FIFO buffer to overlap. The amount of overlap is
specified for each input port in the Program Definition files. The Block_Ovlp field specifies for a given
input port the number of columns each block of data will overlap when removed from the FIFO buffer.

Another important benefit that a FIFO buffer provides is that it allows a program to overlap communica-
tion with computation. For example, when a program is working on a block of input data, it can also be
receiving in its input FIFO buffer future blocks of data. Thus, when it finishes working on the current
block of data, it is ready to start to work on the next. The SPE provides the internal control signals sent
between the receiving and sending programs to keep the FIFO buffers full.

3.3 MESSAGE SYNCHRONIZATION
There are still other issues concerning data communication besides how the data are connected or buff-
ered. In parallel processing, where multiple instances of a program work on a problem, the data seen by



14

each instance of the program must be coherent. Messages received by each instance of a program must
be received in the same order. The SPE guarantees that for programs having multiple input ports, the mes-
sages received over those ports will be received in the same order by each instance of the program. This
is an obvious requirement for a program that receives data from multiple programs which operate asynch-
ronous to each other.

Figure 10 shows the control signals used by the SPE to provide the message-passing synchronization
needed between program instances and to buffer the data between sending and receiving programs. The
request lines from program B to program A indicate that the FIFO buffers in B are ready for more data
and also indicate how empty they are. The sync lines from B0 to B1 and B2 indicate the order in which
B0 has received its messages. B1 and B2 use this information to force their messages to be received by
the user’s program in the same order.

��	�

��
���

���

��
���

���

��
���

���

��	�

��

��

��

��

��

��

Figure 10 . Control signals.

3.4 CONTROL TYPE PORTS

In the Program Definition files, ports can be specified as control type. Control ports are provided to allow
programs to communicate data which are not a part of the normal data-flow stream of the system. Data
sent over a control port do not have specifications for array size, element size, stripe overlap, or block
overlap. When the composition of data sent between programs is irregular (cannot be specified as a two-
dimensional matrix) or is unknown, then the data must be sent via control ports. Control ports by defini-
tion are replicated and can only be connected to other control ports. Control ports are connected like the
replicated–replicated connection shown in figure 7d (ignoring the dimensions of the data).

3.5 DATA FLOW

When a sending program puts data on an output port, it blocks until the SPE has sent the data to all the
input ports it is connected to. The SPE will send the data to each input port as space is made available
in the port’s input FIFO buffer. When all the input ports have received the data in their FIFO buffer, the
SPE returns control to the sending program.

When a receiving program gets data from an input port, it blocks until the data become available in the
port’s input FIFO buffer. When enough data have been collected in the FIFO buffer to satisfy the input
request, the SPE will transfer the data to the user’s buffer and return control to the receiving program.

Internally the SPE controls the flow of data by having the receiving program tell the sending program
when it can send more data. Just before the SPE returns control to the receiving program, it makes a deci-
sion of whether or not to let the sending program send more data. If the receiving program has room in
its FIFO buffer for more data from the sending program, it tells the sending program how much more data
to send. While the data are being sent, the SPE returns control to the receiving program, allowing it to
work on the current buffer of data. The cycle repeats itself each time the receiving program gets data.



15

This method of flow control provides the programmer with a simple decentralized method for synchro-
nizing programs. Each program does not have to know about the requirements of the programs it is con-
nected to or have to generate control signals to control the flow of data it consumes or produces. The
control signals are handled internally by the SPE. Each program simply receives and produces data as
fast as it can go. The double buffer process described above allows a receiving program to work on data
while the SPE sends data for the next cycle.



16



17

4.0 PROGRAMMING INTERFACE

4.1 MESSAGE INTERFACE

4.1.1 spe_init(), portsend(), portrecv(), portid(), portinfo()

The first SPE routine called must be spe_init(). This routine blocks until the calling program receives
from the SPE loader the port map and a set of database values specific to the program instance. From the
port map, the spe_init() call determines and allocates the resources needed to perform the message-pass-
ing operations used later in the program.

Messages are passed between programs with the portsend() and portrecv() system calls. These calls per-
form the special scatter and gather operations needed to transfer data between multiinstanced programs.
With them, each instance of a program will send or receive striped or replicated portions of the data (see
Section 3.1).

Programs communicate through ports, avoiding the need for a program to know where it is sending or
receiving its data. The portsend() and portrecv() system calls require the caller to provide the port ID of
the port to send or receive data. The port ID of a named port is returned by the portid() system call. Port
IDs are assigned by the SPE interface and must be used when referring to a port.

The portion of the problem that an instance of a program works on can be found from the portinfo() sys-
tem call. The portinfo() routine copies to the supplied address information describing the portion of data
which are striped or replicated for the given port and instance. The calling program instance uses this
information to determine the portion of data it will work on and to allocate buffers for receiving or sending
the data. The calling program must be written so that each instance of it can work on any contiguous-row
portion of the data.

These routines and db_wait(), which will be described later, represent the minimum set of routines that
must be used by a program (both portsend() and portrecv() do not have to be used). An example program
using each of these routines is shown in figure 11.

4.1.2 Message Interface Example

The program illustrated in figure 11 repeatedly performs FFTs on blocks of input data. The input data
blocks can be of any size, but must remain fixed over time. Each block of input data is received on port
“in” and each FFTed block of output data is sent to port “out”. The program repeats itself forever until
the SPE system shuts down.

The program is written so that it can be implemented over any number of instances. Resources, such as
the buffer space used to receive input messages, are allocated at run time. Careful use of the portinfo()
routine is critical to developing a flexible general-purpose program. The program is written so that it can
work on any size data block (rows vs. columns), thus maximizing the reuse of the software.

Figure 12 shows how quickly an application can be built by reusing software. The two-dimensional FFT
in figure 12b was constructed by simply connecting two copies of the one-dimensional FFT through a
transposed connection. No new software was developed.



18

_________________________________________________________________________________________________

/* File: fft.c
 *
 * Description: Performs FFTs on rows of input matrix (rows x columns). 
 *              The FFT size is equal to the number of columns in the matrix.
 *              The rows of the input matrix are striped over the program 
 *              instances.  For example if the input matrix is 100 x 128 then
 *              a 128–pt FFT will be performed on each row of the matrix.
 */

#include <spe.h>

long          ii, no_rows, fft_size, port_id, in_pid, out_pid, status;
COMPLEX      *buffer;
size_t        buffer_size;
PORT_INFO in_port_info;

void main() 
{
    /* Initialize the SPE interface */
    spe_init ();

    /* Register and assign database variables here. */

    db_wait (); /* Explained in ”Database Interface” */

    /* Get the port IDs of ports ”in” and ”out” */
    in_pid = portid (”in”);
    out_pid = portid (”out”);

    /* Determine what portion of the problem this instance will work on. */
    portinfo (in_pid, &in_port_info);

    no_rows = in_port_info.end_row – 
              in_port_info.start_row + 1;
    fft_size = in_port_info.no_columns;

    /* allocate space for the input data. */
    buffer_size = (size_t)(no_rows * fft_size * sizeof(COMPLEX));
    buffer = malloc(buffer_size);

    /* Loop forever until some other program terminates the run. */
    while (1)
    {
        portrecv (in_pid, buffer, buffer_size, &status);

        for (ii = 0; ii < no_rows; ii++)

            cfft(buffer+ii*fft_size, fft_size, 1); /* buf,size,1=forward */

        portsend (out_pid, buffer, buffer_size);
    }
}

_________________________________________________________________________________________________

Figure 11 . Example FFT program illustrating the use of the basic SPE routines.

���� ��������������� 		�

		�

�

��
�

		�

�

��
�

		

�

��
�

���� ���������������� 		�

Figure 12 . Reuse of an SPE program.



19

4.1.3  portwait(), portprobe()

In the example given in figure 11, the program waits for data on a single port. To wait for data from multi-
ple input ports (when the order of the messages is not known ahead of time), the program must use the
portwait() and portprobe() routines. The portwait() routine blocks until a message is ready to be received
on one of the input ports. Then when a message is available, the portwait() routine returns with the port
ID of the pending port. The portwait() routine always returns the port IDs of the input messages in the
order they were received. All instances of a program are guaranteed to receive the input messages in the
same order.

The portprobe() routine determines whether a message on a selected input port is ready to be received.
The programmer supplies the port ID of the input port to be checked. If port ID is –1, then all input ports
are checked. The portprobe() routine immediately returns a long value, indicating whether the selected
port has a message available to be received. If the programmer has selected a specific port and a message
is available on that port, then portprobe() returns the port ID of the selected port. If the programmer has
selected all input ports to be checked and a message is available on one or more of the input ports, then
the port ID of the message which was available first is returned. If a message is not available to be
received, the portprobe() routine will return a –1.

The example program illustrated in figure 13 shows how one would use the portwait() routine. The pro-
gram does not know ahead of time the order in which messages become available over ports “in1” and
“in2.”  However, it does know ahead of time that when a message becomes available on port “in2” another
will soon follow on port “in3’ (for instance, these messages may be sent from the same program). In fig-
ure 13, the portwait() routine is used to block the program until a message is available to be received, and
then if–else statements are used to determine from which port to get the message. When a message
becomes available on port “in1,” it is received and processed. When a message becomes available on port
“in2,” it is received and processed along with the message from port “in3.” The program does not neces-
sarily have to receive and process messages in the order in which they become available. In the period
that the messages on ports “in2”  and “in3” are received, a message on port “in1” may have become avail-
able.
_________________________________________________________________________________________________

/* Get the port IDs of each input port. */
in1_pid = portid (”in1”);
in2_pid = portid (”in2”);
in3_pid = portid (”in3”);
...
while (1)
{
    /* Wait on a message from any input port. */
    pid = portwait ();

    if (pid == in1_pid)
    {
        portrecv (in1_pid, buffer1, buffer1_size, &status);
        ...
    }
    else if ( pid == in2_pid)
    {
        portrecv (in2_pid, buffer2, buffer2_size, &status);
        portrecv (in3_pid, buffer3, buffer3_size, &status);
        ...
    }
    else ...
}

_________________________________________________________________________________________________

Figure 13 . Usage of portwait().

4.1.4 portexits(), portisconnected()

A program which has been designed for general use may not know ahead of time how many input and
output ports it may actually have, or if it does, it may not know whether they are actually connected. The



20

routines portexists() and portisconnected() can be used to determine these qualities. The portexists() rou-
tine returns a boolean value indicating whether the named port exists. The portisconnected() routine
returns a boolean value indicating whether the named port is connected. Both routines must be supplied
with the string name of the port of interest. Data sent to a disconnected port will be dropped. Trying to
receive data on a port which is not connected will cause the program to hang.

4.1.5 porteos()

A program can send to an output port an end-of-stream (EOS) mark, indicating that the program will tem-
porarily or permanently stop the flow of data to that port. The EOS mark is detected by a receiving pro-
gram from the status argument of the portrecv() routine. The EOS mark can be used to determine when
a system is finished processing, to reroute the flow of data through a system, or to reconfigure the ports
attached to a net.

Figure 14 shows how a typical data-flow system might be connected. Program A reads data from an input
file, program B processes the data, and program C writes the processed data to an output file. Each pro-
gram executes a loop which receives, processes, and produces frames of data. The system will run until
program C writes to the output file the last  frame of data which program A produces and program B pro-
cesses. When program C writes the last frame of data to the output file, it will then initiate system termina-
tion, causing all the programs to exit.

For this to happen, program C must be able to determine when it has received the last data that it will write.
If this information is not embedded in the data, then it must use some out-of-band technique to determine
the end of the data. For this reason, the EOS mark is provided to indicate that the end of a stream has been
reached. It provides an out-of-band way to tell the user that the last piece of data has been read.

The EOS mark is used as follows: When program A has finished reading the input file and has sent the
last frame of data to program B, it sends an EOS mark to program B by calling porteos(). Program B
detects the EOS mark from the status information returned by the portrecv() call and in turn calls porteos()
to send the EOS mark to program C. Finally, program C detects the EOS mark from the status information
returned by the portrecv() call, closes the output file, and initiates system shutdown.

� �

�	�

� �

��

�

�� �	�

Figure 14 . EOS is daisy-chained through programs A, B, and C.

4.1.6 portbos(), portrecvbos(), portreconfigure()

A program can send to an output port a beginning-of-stream (BOS) mark, which will be sent to all the
input ports to which the net is connected. The BOS mark is used to restart the flow of data through a net
or to reconfigure the ports to which the net is connected.

The BOS mark is sent to an output port by calling portbos(). portbos() must follow porteos() and must
be called before the flow of data is restarted to a given port. The caller supplies to portbos() a port configu-
ration string which will be sent along with the BOS mark to the connected input ports. The port configura-
tion string tells the downstream programs how to reconfigure their input port.

The BOS mark is detected by a receiving program from the status argument of the portrecv() routine. The
portrecv() routine copies the port configuration string, sent along with the BOS mark, to a buffer provided
by the caller. The receiving program uses the configuration string to reconfigure its input port.



21

The portbos() routine can be used to restart a data stream in the same way that the porteos() routine is
used to stop a stream. For example, in figure 14, if program A wants to restart the stream, it would send
a BOS mark to program B by calling portbos(). Program B detects the BOS mark from the status informa-
tion returned by the portrecv() call and in turn sends the BOS mark to program C. Finally program C
detects the BOS mark from the status information returned by the portrecv() call.

After a stream to or from a port is restarted (BOS) and before a program can reuse a port, the program
must reconfigure the port. A program reconfigures a port with the portreconfigure() routine. The program
supplies to the portreconfigure() routine the string name of a valid configuration for the port as defined
in the Program Definition file. When the portreconfigure() routine is called, the SPE reallocates buffers
and reestablishes connections to the ports to which it is connected. The portreconfigure() routine can only
be called after a program receives an EOS mark and BOS mark on a port. Valid configurations for ports
can be passed along with the BOS mark, providing an easy way for a program to get the information. The
portreconfigure() routine can also accept a null string (“” ), which tells the SPE to use the previous config-
uration.

After all programs of ports on a given net have called portreconfigure(), the SPE will redo the decomposi-
tion for each port and establish new  internal communication paths connecting those ports (see Section
3.1). The SPE will make sure that the new port definitions are consistent with each other, using the same
requirements as those for the System Definition file (see Section 2.1). Because the SPE redoes the decom-
position for each port, each program and instance affected will have to recall the portinfo() routine to find
out what portion of the new problem it will work on. Each will have to free() the memory used by the
old message buffers and malloc() new memory for the new message buffers.

Figure 15 is an example of an upstream program reconfiguring one of its output ports to handle “big
FFTs.”  The program calls in order the porteos(), portbos(), portreconfigure(), and portinfo() routines.
The program reconfigures the output port so that it will now handle big FFT-size data blocks. The string
message sent in the portbos() routine tells the downstream programs how to reconfigure their input port.
_________________________________________________________________________________________________

long       out_pid;
PORT_INFO  out_port_info;
...

/* Send EOS mark to downstream process. */
porteos (out_pid);

/* Send BOS mark to downstream process.  Tell it we’re reconfiguring the
 * system to ”big FFTs”. 
 */
portbos (out_pid,      /* port ID */
        ”big_ffts”);  /* new port configuration */

/* Reconfigure our output port */
portreconfigure (out_pid,     /* port ID */
                ”big_ffts”); /* New port configuration. */

/* Determine what portion of the problem this instance will work on. */
portinfo (out_pid, &out_port_info);

_________________________________________________________________________________________________

Figure 15 . Reconfiguring an output port.

Figure 16 is an example of a corresponding downstream program reconfiguring one of its input ports to
match the upstream port to which it is connected. The program calls in order portrecv(), portrecv(), por-
treconfigure(), and portinfo() to get the EOS mark, to get the BOS mark, to reconfigure the input port,
and to determine the new portion of the problem it will work on. After calling the portinfo() routine, it
frees memory used by the old input buffer and allocates memory for the new input buffer. The program
must also recompute (not shown) the number of rows of data it will do next and the new FFT size.



22

_________________________________________________________________________________________________

long           in_pid, status;
CFGNAME_TYPE   in_port_cfg
PORT_INFO      in_port_info;
...

/* Get next data buffer from upstream process. */
portrecv (in_pid, in_buf_ptr, in_buf_size, &status);
if (status == EOS)
{
    /* Get BOS mark from upstream process. */
    portrecv (in_pid, in_port_cfg, 0, &status);
    if (status != BOS)
    {
        /* ERROR: Tell user that BOS didn’t follow EOS. */
    }else
    {
        portreconfigure (in_pid,       /* Port ID */
                        in_port_cfg); /* New port configuration */

        /* Determine what portion of the problem this instance will work on. */
        portinfo (in_pid, &in_port_info);
       
        
        /* free memory used with old configuration. */
        free(in_buf_ptr);

        /* allocate memory used in new configuration. */
        in_buf_ptr = malloc(...);
        ...

    }
}

_________________________________________________________________________________________________

Figure 16 . Reconfiguring an input port.

4.2 DATABASE INTERFACE
As described earlier, the SPE provides a global database to store symbolic names with their associated
values. Variables can be stored and read from the database through either a user or program interface. This
section describes the program interface.

The program interface, unlike the user interface, does not consider a variable to have a specific destina-
tion. That is, a program cannot specify that a variable should contain different values for different pro-
grams or instances of programs. This is consistent with the SPE philosophy that a program need not know
about the existence or requirements of other programs in a system.

A program interfaces to the SPE database by first registering each variable that it will access from the
database. When a program changes a variable’s value in the database, then a copy of that variable propa-
gates to all programs which have registered for it. This method for maintaining global data was chosen
to maximize system performance. Alternatively, the global database could have been designed so that
each time a a variable was stored to the database, it propagated to all the programs, regardless of which
program wanted it. Or even worse, it could have been required that each time a program wanted to use
a variable in the global database, it would have to make a request. In either case, the global database man-
ager increasingly becomes a bottleneck as the number of programs in a system increases.

When the SPE interface on a program receives a new value for a database variable, it waits before updat-
ing the local copy of the variable. It must wait to make sure that when the local copy is changed, the pro-
gram is not in the middle of accessing it, because certain variables, such as strings or structures, may
require atomic access. Also, it must wait to make sure that each instance of a program sees the local copy
changed at the same time. For this reason, the following algorithm is used to determine when the local
copy is updated: If the program is executing on one node, then the local copy of the variable will be



23

updated during the next SPE system call. If the program is executing on multiple nodes and has input
ports, then the local copy of the variable will be updated inside the next portrecv() system call. If the pro-
gram is executing on multiple nodes and has only output ports, then the local copy of the variable will
be updated inside the next portsend() system call. portrecv() and portsend() are allowable update points
because the SPE receives database variables as if they were port messages. It guarantees that database
variable updates and port messages are received in the same order by each instance of a program.

4.2.1 db_register(), db_set(), db_wait()

Three routines are used by a program to interface to the global database. A program calls the db_register()
routine to tell the database manager that it is interested in a variable. The program then supplies to the
routine the string name of the database variable, an address in memory where the local copy of the variable
will be maintained, an enumeration indicating the type of variable that it expects, and the size of the vari-
able in bytes. The contents of the local copy of the variable are not sent to the database manager. When
a program registers a variable, the global database manager sends the value of the variable to the program
if it has already been set. If the program has already called the db_wait() routine (described later), then
the value is immediately copied to the program’s local copy of the variable. If the program has not yet
called the db_wait() routine, then the variable is updated later when db_wait() is called.

A program sets the value of a database variable by calling the db_set() routine. It supplies to the routine
the string name of the database variable, the address in memory where the value will be copied from, an
enumeration indicating the type of variable being stored, and the size of the variable in bytes. When the
value of a database variable is set, its value is propagated to all programs which have registered for it.

After a program has registered or set all database variables critical to system startup, it calls the db_wait()
routine. This routine is a system-synchronizing routine which waits until all programs in the system have
also called db_wait(), indicating that they too have registered or set database variables critical to system
startup. This routine must be called regardless of whether a program registers or sets database variables.
The db_wait() routine also updates local copies of the database variables which were set after they are
registered.

The example in figure 17 shows how one might use the global database to make the FFT program more
general purpose. The program uses the global database variable “forward_fft” to determine whether it
should perform a forward or reverse FFT. The variable would be set from a Database Startup file or Pro-
gram Definition file where it could be set differently for each usage of the program. The FFT program
(or any program in the system) must make sure that it does not set a value to this database variable, thus
propagating the same value to all usages of the program (different programs may be asked to do different-
size FFTs). So in this case, it might be wise to make the database variable name more unique to the func-
tion of the program.

Figure 18 shows how one might use the new FFT program to build a simplified beamformer. Also shown
is the Database Startup file that controls whether each program does forward or reverse FFTs. One can
see how quickly a system can be built by reusing software.

Extending this concept of reusable software, one might build a general-purpose processing module which
could perform any of the functions found in a standard vector-processing library. A global database vari-
able would determine how each usage of the processing module within a system would function. For
instance, the string database variable “libxx_function” could be used to determine if the libxx.c program
would perform an FFT, correlation, or vector magnitude function. From the Database Startup file, one
could specify a different function for each use of the program.



24

_________________________________________________________________________________________________
void main()
{
    ...
    BOOLEAN       forward_fft = TRUE; /* Default: forward FFT */
    ...
    spe_init ();
 
    /* ”forward_fft” will be set in the Database Startup file. */
    db_register (”forward_fft”, &forward_fft, DB_INT, sizeof(BOOLEAN));

    /* Wait for other programs to register or set database variables.
     * Update local copies of the database variables. */
    db_wait ();
    ...

    while (1)
    {
        portrecv (in_pid, buffer, buffer_size, &status);

        for (ii = 0; ii < no_rows; ii++)
            if (forward_fft)
               cfft(buffer+ii*fft_size, fft_size, 1); /* Forward FFT */
            else 
               cfft(buffer+ii*fft_size, fft_size,–1); /* Reverse FFT */

        portsend (out_pid, buffer, buffer_size);
    }
}

_________________________________________________________________________________________________

Figure 17 . Using a global database variable.
_______________________________________________________________________________________________

����

�

�����

����

	

���� �

����

�

����

����� �������������

// File: database/beamformer
//
// Key Word Name             Type(Value)                   Program(instance)
// ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   VAR      forward_fft      TRUE                          fft1
   VAR      forward_fft      TRUE                          fft2
   VAR      forward_fft      FALSE                         fft3

���� 
�������� �������� �����

_______________________________________________________________________________________________

Figure 18 . Program reuse controlled by the global database.

4.3 REPORT INTERFACE
Debugging a parallel application requires that the user deal with multiple programs and multiple instances
of programs. Using the traditional printf() statement to trace the progress of an application is not practical
because of its replicated use when called from programs implemented on multiple nodes or from common
modules used by multiple programs. Because of its replicated use, when printf() writes to standard output,
the user gets more information than bargained for (e.g., 50 repetitions of the same message), and in addi-
tion, does not know which program or program instance has generated each output. (Also, on the Para-
gon, when more than one printf() is used simultaneously, their results fragment and mix to the standard
output.) What is needed instead is a routine which acts like printf() but which conditionally executes
based on conditions that the user can control.



25

4.3.1 report()

The SPE provides to the programmer the report() system call. The report() system call functions the same
as the printf() system call except that it requires one extra argument. The first argument to report() speci-
fies a report category variable in the global database that report() will use at run time to determine if it
should actually write the data to standard output. Report category variables are created by the user,
through Database Startup files, to control which report() calls write to standard output. Each use of
report() can refer to a different report category variable, but through careful selection of categories and
placement of report() calls, one can create an effective debugging environment. The other arguments to
report() look the same as that used in printf().

Report category variables are created by the user. Through them, the user tells the application which cate-
gories of reports it wants to see, for which programs and instances, and for what range of time (time is
dictated by range of messages over a specific port). Shown below is how a report category variable is
internally constructed in the SPE:

typedef enum {OFF,ON,FRAMES} MODE;

typedef struct {

MODE mode;

char port_name[32];

long start_frame;

long end_frame} REPORT;

The mode field tells report() which mode to use to determine if it should write to standard output. If mode
is OFF,  then report() will not generate output. If mode is ON, then report() will generate output for the
selected program and instance each time it is called. If mode is FRAMES, then report() will generate out-
put between the times determined by the port_name, start_frame, and end_frame fields. port_name is
the name of a port for the target program and start_frame and end_frame specify the message counts
which delimit the time that the report will be generated. Most of the time, the user will indicate that reports
are not desired. report () calls which use a report category variable which has not been defined will not
generate output.

The user creates report category variables by specifying them in the Database Startup files.  Figure 19
is an example of how one might specify a report category variable in a Database Startup file.

_______________________________________________________________________________________________

  // Key  Word Name           Type(Value)         Program(instance)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
     VAR   interesting_vars  FRAMES,gain,2,5        beamformer(0)

_______________________________________________________________________________________________

Figure 19 . Specifying report() output using FRAMES mode.

This line says that we want to see output which refer to “interesting_vars” from the report() routines
called from instance 0 of the beamformer program and called between the times that the gain port receives
its 2nd and 5th message. The user can set a different value for “interesting_ vars” to each program and
instance in the system, or the same value to all instances of a specific program in the system, or the same
value to all instances of all programs in the system.

For this report category variable to be effective, the beamformer program would have put report() calls
after places where it computes these interesting variables. For example, a portion of the beamformer pro-
gram might look like:



26

speed_of_sound = ...
report (”interesting_vars”,”speed_of_sound=%f”,speed_of_sound);
...
no_bad_sensors = ...
report (”interesting_vars”, no_bad_sensors=%d”, no_sensors);

As a result, when these calls are executed, meeting the conditions specified in the report category variable,
the report() will generate output. For example, the following output might appear:

REPORT:beamformer(0):gain:frame=2, interesting_vars, clk=87.887,node=24
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
speed_of_sound=1588.1
REPORT:beamformer(0):gain:frame=2, interesting_vars, clk=87.889,node=24
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
no_bad_sensors=0

When the report() routine writes data to standard output, it provides a header portion that indicates the
name of the report category variable, the name of the calling program, the instance of the calling program,
the time at which it occurred, and the physical node number.

The report category variables “error”, “warning”, and “info” are predefined. The user cannot set values
for these variables. When a program uses them in a report() call, it forces the formatted data to be written
to standard output. Also, the SPE generates a summary report at system termination that indicates how
many times each of these predefined variables are used. Shown below are example uses of these catego-
ries:

      /* Force report() to generate output. */

      report (”info”,”Beginning Initialization”);

      ...

      if (speed_of_sound > 2000)

          report (”warning”,”speed of sound out of range”);

      ...

Many of the SPE system calls have associated report category variables which can be set by the user. They
can be used to determine when system calls are entered and exited, thus tracing the execution of a pro-
gram. Other report categories can be used to determine when memory is allocated with malloc(), when
files are open and closed, or to report performance monitoring statistics (see Appendix B).

4.4 PERFORMANCE MONITORING INTERFACE

4.4.1 monitor_on(), monitor_off()

The SPE provides two simple routines, monitor_on() and monitor_off(), which the user can use to moni-
tor the performance of sections of code within an application program.  The user would use these routines
to help find bottlenecks within the application and thus optimize the slow programs of an application or
reallocate the hardware resources to the application programs.

The monitor_on() and monitor_off() routines are placed around sections argument of code that the pro-
grammer wants performance statistics on. The programmer supplies a string arugment to the monitor rou-
tines that identifies the section of code to be monitored. The monitor routines keep track of how many
times each section of code is entered, how much accumulated time is spent in each section, the minimum
and maximum times spent in each section, and the accumulated number of operations performed in each
section.

At the end of a run, the user can view the information recorded by each of the monitors. For an example
of how to use the monitors and view the results, see the entry for monitor_on() in Appendix D.



27

5.0 USING SPE

5.1 COMPILING AND LINKING AN SPE PROGRAM

When compiling and linking an SPE program on the Intel Paragon, you must use the –nx switch. To see
the effects of this switch, read the Paragon User’s Guide manual. When linking an SPE program, you
must link in the library libspe.a.

For example, the following command line compiles and links the file myprogram.c to create an execut-
able file called myprogram:

% cc –nx –o myprogram myprogram.c libspe.a

5.2 RUNNING AN SPE SYSTEM

A user loads and runs an SPE application by executing spe . The usage for spe  is:

     %  spe –pn partition –on 0 –s sys_def_filename

            [[-d database_startup_filename]...] [-l log_filename]

            [-ident] [–identall] [–noload] [-portmap]

            [[–Dname]...] [[–Dname=def]...]

The arguments –pn partition –on 0 are arguments to the Paragon application(1) command, which say that
the spe  program will run on node 0 of partition partition. The remainder of the arguments, sys_def_file-
name [–ident][–identall][–noload][-portmap][–l log_filename] 
[[–d database_startup_filename]...][[–Dname]..] [[–Dname=def]..], are passed to the spe  program
after it is loaded on node 0.

The sys_def_filename argument is required. This is the name of the System Definition file that spe  will
read to start the application. spe  then begins to load the programs specified in the System Definition file
onto the target nodes of the hardware. From the System Definition file, spe  reads the Program Definition
files and builds and downloads a unique port map to each program instance in the system. spe then
reads the Database Startup files as specified on the command line and in the Program Definition files and
initializes the SPE database. Once this is done, the programs are ready to run.

As an example, to run the system described in figure 3 you would execute:

%  mkpart –sz 30 mypart
%  spe –pn mypart –on 0 –s system/receiver -d database/receiver



28



29

Appendix A

STRIPE ALGORITHM

The algorithm used to compute the range of rows that will be striped over each instance of a pro-
gram is as follows:

    if (instance < no_rows % no_instances)
    {
        start_row = instance * (no_rows / no_instances + 1);
        end_row   = start_row + (no_rows / no_instances);
    }
    else
    {
        start_row = instance * (no_rows / no_instances) +
                      (no_rows % no_instances)
        end_row   = start_row +  (no_rows / no_instances)– 1
    }

As an example, if a 100x200 array is striped over 3 instances, then instance 0 will have rows
0 to 33, instance 1 will have rows 34 to 66, and instance 2 will have rows 67 to 99. The columns
dimension of the array does not affect the striping.



30



31

Appendix B

PREDEFINED REPORTS

spe_init
spe_init()(entering):

spe_init()(exiting): freemem = %d

spe_idle
spe_idle() : Program has gone into idle state.

spe_terminate
spe_terminate() : Starting termination.

spe_terminate():  Finishing termination .

spe_malloc
spe_malloc():  ERROR: Could not malloc %d bytes of memory for

              ’purpose_str ’ .  %d bytes of memory left.

spe_malloc() : Malloced %d bytes of memory at address %d for

              ’purpose_str ’ .  %d bytes of memory left.

db_set  
db_set(): Set the value of ’ variable_name ’.

db_register  
db_registered(): Registered ’ variable_name ’.

portprobe
portprobe()(entering): Checking for message on any port.

portprobe()(exiting): Message available on port ” portname ”.

portwait
portwait()(entering): Waiting for an available message on any port.

portwait()(exiting): Message available on port ” portname ”

portrecv 
portrecv(”portname”)(entering): Waiting to receive message.

portrecv(”portname ” )(exiting): Received message.

portsend
portsend( ” portname ” )(entering): Waiting to send message.

portsend( ” portname ” )(exiting): Sent message.

show_monitors



32



33

Appendix C

KEY WORDS

BUFFER
CONTROL
EXCLUDE
FALSE
FRAMES
FUNNEL
INPUT
NA
NET
OFF
ON
OUTPUT
PORT
PROGRAM
REPLICATED
STRIPED
TRANSPOSE
TRUE
VAR



34



35

Appendix D

PROGRAMMING CALLS

db_register()
db_set()
db_wait()
monitor_on(), monitor_off()
port_discard_data()  (no man page)
porteos(), portbos()
portexists(), portisconnected()
portid()
portinfo()
portcount() (no man page)
portname()
portprobe()
portreconfigure()
portrecv()
portsend()
portwait()
programinfo()
report()
report_enabled()
spe_clock()
spe_idle()
spe_init()
spe_freemem()
spe_malloc(), spe_free()  (no man page)
spe_terminate()
spe_terminate_define()
write_mat_file()  (no man page)
write_sparse_mat_file()  (no man page)



36

DB_REGISTER��
__________________________________________________________
db_register(): Tell the database manager that we are using a variable of a given name and size.

�����
�
#include <spe.h>

void db_register(
const char *name,
void *address,
DB_TYPE type,
size_t size);

typedef enum DB_TYPE {
DB_INT,
DB_FLOAT,
DB_DOUBLE,
DB_STRING,
DB_REPORT,
DB_FUNNEL,
DB_USER_DEFINED

} DB_TYPE;

�����	�	��

name is the symbolic name of the variable to be registered. name must be
31 characters or less.

address is the address in memory where the variable will be maintained.

type is an enumeration indicating the type of variable expected.

size is the size in bytes of the variable to be maintained.

�	���
��
�
Tell the database manager that a variable of the given name and size will be used.
Each program which uses a database variable must register for it. All programs regis-
tering for the same variable must give the same value for the variable type and size.
Once the variable is registered, its current value will be maintained in the location
provided by address. The variable will be delay-updated after a program calls the
db_set() routine. So that the update appears atomic and synchronous, the update will
occur in the recipient programs when the next SPE routine which allows updates is
called. Since programs are synchronized to the point of input messages, when a pro-
gram is run on multiple instances, the variable will be updated when the next por-
trecv() routine is called. If the program has no input ports the variable will be updated
when the next portsend() routine is called. If the program is run from only one
instance, then the variable will be updated during the next SPE call.

�����
The SPE system will terminate and produce an error message if the type or size argu-
ments disagree with what is stored in the database.



37

DB_SET��
__________________________________________________________
db_set(): Copy the value at the specified address to the named variable in the database.

�����
�
#include <spe.h>

void db_set(
const char *name,
void *address,
DB_TYPE type,
size_t size);

typedef enum DB_TYPE {
DB_INT,
DB_FLOAT,
DB_DOUBLE,
DB_STRING,
DB_REPORT,
DB_FUNNEL,
DB_USER_DEFINED

} DB_TYPE;

�����	�	��

name is the symbolic name of the database variable to which a new value
will be copied. name must be 31 characters or less. The variable must
have already been registered with db_register().

address is the address in memory where the value is copied from. Typically
this would be different from the address used in db_register(), to
which the data are copied. If the values are the same, then it is possible
that not all instances of the calling program would see a variable
change value at the same time.

type is an enumeration indicating the type of variable being stored to the
database.

size is the size in bytes of the variable to be copied. If the size does not
agree with the registered variable, then the SPE system will terminate
and produce an error message.

�	���
��
�
Copy the value at the specified address to the named variable in the database. The
database manager delay–updates the value to each program which has registered for
it (including itself). See db_register() for description.

�����
The SPE system will terminate and produce an error message if the type or size argu-
ments disagree with what is stored in the database.



38

DB_WAIT��
__________________________________________________________
db_wait(): Wait until all programs in the system have registered.

��	
��
#include <spe.h>

void db_wait(void);

��������
	
Wait until all programs in the system have registered, and set all variables critical to
startup. This routine is used as a form of synchronization to the database to make sure
that all programs have registered variables critical to startup before proceeding. Pro-
grams are still able to register variables after db_wait().

���
�
Must be called only once and after spe_init() or else the SPE system will terminate
and produce an error message.



39

MONITOR_ON(), MONITOR_OFF()
__________________________________________________________
monitor_on(), monitor_off(): Keep performance statistics on section of code surrounded by these
calls.
��
�����

#include <spe.h>

void monitor_on(
const char *section_name);

void monitor_off (
const char *section_name,
long no_ops);

���	����

section_nameis the name of the section being monitored. Must be the same in both
routines for the section being monitored. section_name must be 31
characters or less.

no_ops is the number of operations executed in the section of code being
monitored.

���������

These routines are placed around sections of code for which the programmer wants
performance statistics. monitor_on() and monitor_off() are placed, respectively, at
the beginning and end of a section of code. The same section_name string must be
supplied to both. When the monitor_on() routine is called, the time on the hardware
clock is recorded for the section of code which will be monitored. When the corre-
sponding monitor_off()  routine is called (has the same section_name), the hardware
clock is read, and the elapsed time since the monitor_on() routine was called is com-
puted. The elapsed time is added to a variable keeping track of accumulated time, and
compared to other variables keeping track of minimum and maximum values. Also
recorded are the number of times each section of code is entered and the number of
accumulated operations performed by each. At the end of a run, the user can view
the data recorded by the monitor routines by turning on the performance report cate-
gory variable for the interested programs and instances. For instance
    VAR  performance  ON   beamformer(0)

Sections of code surrounded by the monitor_on() and monitor_off()  routines can
embed other sections of code being monitored. Also, different sections of code can
use the same section_name, thus grouping the statistics for those sections. The
no_ops argument can be set to zero if the user does not care about the ops/sec statistic.

���
The SPE system will terminate and produce an error message if monitor_on() and
monitor_off()  are not called in order for a given section of code.



40

�������
...

monitor_on (”both”);

/* 128-pt Forward FFT */

monitor_on (”fft”);

cfft(buf, 128, 1);

monitor_off (”fft”,4480); /* 5n*logn = 4480 */

/* 128-pt Inverse FFT */

monitor_on (”ifft”);

cfft(buf, 128, –1); 

monitor_off (”ifft”,4480);

monitor_off (”both”,0);

...



41

PORTEOS(), PORTBOS()
__________________________________________________________
porteos(): Sends an end-of-stream (EOS) mark to an output port.
portbos(): Sends a beginning-of-stream (BOS) mark and a string containing a port configuration
label to an output port.
��
�����

#include <spe.h>

void porteos(
long port_id);

void portbos(
long port_id;
char *port_cfg);

���	����

port_id is the port ID of the output port to which the EOS mark or BOS mark
will be sent. Port IDs are assigned by the SPE system and are returned
by the portid() , portprobe(), and portwait()  system calls.

port_cfg is a string containing a port configuration label which is sent to an out-
put port. port_cfg must be 31 characters or less.

���������

porteos() sends an EOS mark to an output port. The EOS mark indicates that the pro-
gram will temporarily or permanently stop the flow of data to that port. The EOS
mark can be detected by a receiving program from the status argument of the por-
trecv() routine. The EOS mark can be used to determine when a system is finished
processing, to reroute the flow of data through a system, or to reconfigure the ports
attached to a net. See Section 4.1.5 on how to use porteos().

portbos() sends a BOS mark and a string containing a port configuration label to an
output port. The BOS mark and port configuration can be detected by a receiving pro-
gram from the status argument of the portrecv() call and the contents of the receive
buffer. The BOS mark is used to restart the flow of data through a net or to reconfigure
the ports to which it is connected. See Section 4.1.6 on how to use portbos().

���
The SPE system will terminate and produce an error message if porteos() and port-
bos() are called out of order or if the port_id argument is not a valid output port ID.



42

PORTEXISTS(), PORTISCONNECTED()
__________________________________________________________
portexists(): Returns a boolean value indicating whether the port exists.
portisconnected(): Returns a boolean value indicating whether port is connected.

��	
��
#include <spe.h>

BOOLEAN portexists(
char *portname);

BOOLEAN portisconnected(
char *portname);

���������

portname is the name of the port to check for existence or connectivity. port-
name must be 31 characters or less.

��������
	
portexists() returns a boolean value indicating whether the named port exists. This
routine can be used by a program designed to work with any number of input or out-
put ports. For example, a multiplexing program may not know ahead of time how
many input ports it will have to multiplex data from.

portisconnected() returns a boolean value indicating whether the named port is con-
nected to a net. This routine can be used by a program designed to allow partial con-
nectivity to its ports. It will allow the program to avoid reading or writing to ports
not connected to a net.



43

PORTID��
__________________________________________________________
portid() : Returns the port ID for the named port.

�������
#include <spe.h>

long portid (
char *portname);

�
�
������

portname must be the name of one of the ports specified in the Program Defini-
tion file of the calling program. If the named port does not exist, then
the SPE will terminate the run and produce an error message. port-
name must be 31 characters or less.

������� 	
���
Returns the port ID for the named port.

���������
Returns the port ID for the named port. The SPE system calls use port IDs to receive
or send data over the specified ports.

������
The SPE system will terminate if the named port does not exist in the Program Defi-
nition file of the calling program.



44

PORTINFO��
__________________________________________________________
portinfo() : Copies the configuration information of a port to the address supplied by the caller.

��	
��
#include <spe.h>

void portinfo (
long port_id,
PORT_INFO *port_info);

typedef struct PORT_INFO {
/* Contains values which are common to each instance. */
char name[32];
char cfg[32];
PORT_TYPE type;
BOOLEAN is_input;
BOOLEAN is_transposed;
BOOLEAN is_funneled;
long no_buffers;
long no_rows;
long no_columns;
long elem_size;
long striped_ovlp;
long block_ovlp;

/* Contains values which are unique to each instance. */
long start_row;
long end_row;
long start_ovlp_row;
long end_ovlp_row;

} PORT_INFO;

typedef enum PORT_TYPE {REPLICATED, STRIPED, CONTROL}
PORT_TYPE;

���������

port_id is the port ID of the port for which information is sought. Port IDs are
assigned by the SPE system and are returned by the portid() , port-
probe(), and portwait()  system calls.

port_info is the address to which the port’s configuration information will be
copied.



45

��
�	������
Copies the configuration information of a port to the address supplied by the caller.
Portions of the configuration information will be unique to the instance of the calling
program. The calling program uses this information to determine which portion of
the problem it works on. If type is STRIPED, then start_row, end_row,
start_ovlp_row, and end_ovlp_row contain valid data which are unique to each
instance. If type is REPLICATED or CONTROL , then they are not used. The other
fields of the structure always contain valid data and are the same for each instance
of a given port.

�		�	

The SPE system will terminate and produce an error message if the port_id argument
is not a valid port ID.



46

PORTNAME��
__________________________________________________________
portname(): Returns a pointer to the string name of the port for the given port ID.

�����
�
#include <spe.h>
char *portname(

long port_id);

�����	�	��

port_id must be a valid port ID. Port IDs are assigned by the SPE system and
are returned by the portid() , portprobe(), and portwait()  system
calls.

�	���
��
�
Returns a pointer to the string name of the port for the given port ID.

�����
The SPE system will terminate and produce an error message if port_id is not valid.



47

PORTPROBE��
__________________________________________________________
portprobe(): Determines whether a message on a selected input port is ready to be received (non-
blocking).
�������

#include <spe.h>

long portprobe(
long port_id);

�
�
������

port_id is the input port to be checked. Setting this value to –1 checks all input
ports.

������� 	
���
If a message is ready to be received, portprobe() returns the port ID of the selected
port.  Otherwise, it returns a minus one (–1).

���������
Determines if a message on a selected input port is ready to be received. The pro-
grammer supplies in the argument port_id the ID of the input port to be checked. If
port_id is –1, then all input ports are checked. portprobe() immediately returns a
long value, indicating whether the selected port has a message available to be
received. If the programmer has selected a specific port (port_id is not –1) and a mes-
sage is available on that port, then portprobe() returns the port ID of the selected
port. If the programmer has selected that all input ports be checked (port_id is –1)
and a message is available on one or more of the input ports, then the port ID of the
message which was available first is returned. If a message is not available to be
received, the portprobe() routine will return a –1.

������
The SPE system will terminate and produce an error message if port_id is not a valid
input port.

������
The database variable portprobe can be set so that the program instance will write
a debug message to standard output when portprobe() is called.

When it is called, it will write one of the following statements to standard output.
portname is replaced with the port the message is available on.

   portprobe(): Message not available on any input port.

   portprobe(): Message not available on port ”portname”.

   portprobe(): Message available on port ” portname ”.



48

PORTRECONFIGURE()
__________________________________________________________
portreconfigure(): Reconfigures the port to one of the alternate configurations found in the Pro-
gram Definition file.
��
�����

#include <spe.h>

void portreconfigure(
long port_id;
char *port_cfg);

���	����

port_id is the port ID of the port to be reconfigured. Port IDs are assigned by
the SPE system and are returned by the portid() , portprobe(), and
portwait()  system calls.

port_cfg is a string containing a port configuration label to which the port will
be reconfigured. port_cfg must be 31 characters or less.

���������

Reconfigures the port to one of the alternative configurations found in the Program
Definition file. The port is reconfigured to a port configuration as specified by the
argument port_cfg. portreconfigure() must be called after an EOS and BOS mark
are sent to an output port or after an EOS and BOS mark are detected on an input port.
See Sec 4.1.6 on how to use portreconfigure().

���
The SPE system will terminate and produce an error message if porteos(), portbos(),
and portreconfigure() are called out of order when an output port is reconfigured,
or if portreconfigure() is not called after a receiving program detects an EOS and
BOS mark on an input port, or if the port_id argument is not a valid port ID.



49

PORTRECV��
__________________________________________________________
portrecv(): Posts a receive for a message on an input port and blocks the calling process until the
receive completes.
�����
�

#include <spe.h>

void portrecv(
long port_id,
void *buf,
size_t len;
long *status);

�����	�	��

port_id is the port ID of the input port on which the message will be received.
Port IDs are assigned by the SPE system and are returned by the por-
tid() , portprobe(), and portwait()  system calls.

buf points to the buffer where the message will be received.

len is the size of the receiving buffer in bytes. This is used as a consis-
tency check by the SPE. The SPE knows from the port map what the
message size should be. If the values do not agree, then SPE will ter-
minate the run and produce an error message.

status indicates whether an EOS or BOS mark has been detected.

�	���
��
�
Posts a receive for a message on an input port and blocks the calling process until the
receive completes. This routine performs a special type of message transfer in which
the data received have been combined and collected from multiple instances accord-
ing to the port map specified for the receiving instance.

This routine can also detect whether the sender has sent an EOS or BOS mark. If an
EOS mark is detected, then status will contain the predefined long value EOS and
no data will be copied to buf. If a BOS mark is detected, then status will contain the
predefined long value BOS and a string message from the sender will be copied to
buf. If neither mark is received, then status will contain the value zero and a normal
message transfer occurs.

�����
The SPE system will terminate and produce an error message if the len argument is
not the right size or if the port_id argument is not a valid input port ID.



50

������
The database variable portrecv can be set so that the program instance will write a
debug message to standard output when portrecv() is called and returned.

When it is called, it will write the following statement to standard output.  portname
will be filled in with the port on which the call is waiting.
   portrecv()(entering): Waiting to receive a message on

                         port ” portname ”.

When it is returning, it will write the following statement to standard output:

   portrecv()(exiting): Received a message on port ” portname ”.



51

PORTSEND��
__________________________________________________________
portsend(): Sends a message to an output port and blocks until the send completes.

�������
#include <spe.h>

void portsend(
long port_id,
void *buf,
size_t len);

�����
�
��

port_id is the port ID of the output port to which the message will be sent. Port
IDs are assigned by the SPE system and are returned by the portid() ,
portprobe(), and portwait() , system calls.

buf points to the buffer containing the message to send.

len is the size of the sending buffer in bytes. This is used as a consistency
check by the SPE. The SPE knows from the port map what the mes-
sage size should be. If the values do not agree, the SPE will terminate
the run and produce an error message.

�
�	������
Sends a message to an output port and blocks until the send completes. This routine
performs a special type of message transfer in which the data are decomposed and
sent to specific instances according the port map for the sending instance. When the
routine returns, the buffer can be reused.

������
The SPE system will terminate and produce an error message if the len argument is
not the right size or if the port_id argument is not a valid output port ID.

�
����
The database variable portsend can be set so that the program instance will write a
debug message to standard output when portsend() is called and returned. 

When it is called, it will write the following statement to standard output.  portname
will be filled in with the port to which the message is sent.
   portsend()(entering): Waiting to send message to port 

                         ” portname ”.

When it is returning, it will write the following statement to standard output:
   portsend()(exiting): Sent message to port ” portname ”.



52

PORTWAIT��
__________________________________________________________
portwait() : Waits until a message is ready to be received and returns the port ID for the message.

��������
#include <spe.h>

long portwait (void);

������� �	��
Returns the port ID of a message ready to be received. Port IDs are assigned by the
SPE system and are returned by the portid() , portprobe(), and portwait()  system
calls.

���
�������
The portwait()  routine blocks until a message is ready to be received on one of the
input ports. Then when a message is available, the portwait() routine returns with
the port ID of the pending port. The portwait()  routine always returns the port IDs
of the input messages in the order they were received. All instances of a program are
guaranteed to receive the input messages in the same order. See also portprobe().

������
The SPE system will terminate and produce an error message if there are no input
ports specified in the System Definition file for the calling program.

������
The database variable portwait can be set so that the program instance will write a
debug message to standard output when portwait()  is called and returned.

When it is called, it will the write the following to standard output:
   portwait()(entering): Waiting for an available message on 

                         any port.

When it is  returning, it will write the following to standard output. portname will be
filled in with the port name on which the message is available.
   portwait()(exiting): Message available on port ” portname ”



53

PROGRAMINFO��
__________________________________________________________
program(): Copies the program information to the address supplied by the caller.

�����	�
#include <spe.h>

void program(
PROGRAM_INFO *port_info);

typedef struct PROGRAM_INFO {
char name[32];
long no_ports;
long no_instances;
long my_instance;

} PROGRAM_INFO ;

����
�����

port_info is the address to which the program information will be copied.

�����	�	��
Copies program information to the address supplied by the caller. The calling pro-
gram can use this to determine its symbolic name, how many ports it has, how many
instances of the program there are, and which instance it is.



54

REPORT��
__________________________________________________________
report() : Conditionally writes to standard output formatted data.

�����	�
#include <spe.h>

void report (
const char *report_ctg;
const char *format;
...);

(internal typedef)
typedef struct {

MODE mode;
char port_name[32];
long start_frame;
long end_frame

} REPORT;

typedef enum {OFF,ON,FRAMES} MODE ;

����
�����

report_ctg is the name of the global database variable that determines whether
this routine will write to standard output. The database variable is
internally typed as REPORT. report_ctg must be 31 characters or
less.

format is the format string which controls how the data are written. It is iden-
tical to the printf()  format string.

�����	�	��
This routine conditionally writes formatted data to standard output. It functions iden-
tically to printf()  except that it has an additional argument, report_ctg, which it uses
to determine whether it will write to standard output.  report_ctg is the name of a
report category variable in the global database. The user creates and manipulates
report category variables for use by the report() routine. The report()  routine will
write to standard output based on the contents of the report category variable. The
following formula is used:
      if ((mode == ON) ||

          ((mode == FRAMES) &&

           (current_frame(port_name) >= start_frame)  &&

           (current_frame(port_name) <= end_frame)))

The user creates report category variables by specifying them in the Database Startup
files. From this file, the user can control the contents of report category variables thus
affecting which report()  calls will output data. For a complete description, see Sec-
tion 4.3.



55

When the report()  routine writes data to standard output, it provides a header portion
indicating the name of the report variable, the name of the calling program, the
instance of the calling program, the physical node number, and the time at which it
occurred.

�����	
To turn on a report which prints the “interesting” variables computed by instance 0
of the beamformer program, between the times that the “gain” port receives its 2nd
and 5th message, the following line should be included in one of the Database Startup
files:

VAR interesting_vars   FRAMES,gain,2,5  beamformer(0)

The beamformer program would have embedded report()  calls in the program where
the “interesting” variables are computed.
  speed_of_sound = ...

  report (”interesting_vars”,”speed_of_sound=%f”,speed_of_sound);

  ...

  no_bad_sensors = ...

  report (”interesting_vars”, “no_bad_sensors=%d”, no_sensors);

The standard output might look like:

REPORT:beamformer(0):gain:frame=2,interesting_vars,

clk=87.887,node=24 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

speed_of_sound=1588.1

REPORT:beamformer(0):gain:frame=2,interesting_vars,

clk=87.889,node=24 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

  no_bad_sensors=0

��	�	
��	�� �	����� �������	�
The variables error , warning, and info are predefined report variables. When a pro-
gram uses them in a report()  call, it forces the formatted data to be written to standard
output. The SPE keeps track of how many report()  calls of each type are made.
Example:
  report (” info ”,”Beginning Initialization”);

  ...

  if (speed_of_sound > 2000)

      report (” warning ”,”speed of sound out of range”);

      /* Force this to be printed */

  ...



56

REPORT_ENABLED ��
__________________________________________________________
report_enabled(): Returns a boolean value indicating whether the report category variable is set so
that it would cause a report()  call, using it to generate output.
�����	�

#include <spe.h>

BOOLEAN report_enabled(
const char *report_ctg);

����
�����

report_ctg is the name of the global database variable that determines whether
a report()  routine would generate output.  report_ctg must be 31
characters or less.

�����	�	��
This routine returns a boolean value indicating whether the report_ctg variable is set
so that it would cause a report()  call, using it to generate output. report_ctg is the
name of a report category variable in the global database. The routine is the same rou-
tine that the report()  routine uses internally. It is provided to the user so that the user
can create its own report()  style routines. See report()  for more information about
its usage.



57

SPE_CLOCK��
__________________________________________________________
spe_clock(): Returns the elapsed time in seconds since the application started running.

�������
#include <spe.h>

double spe_clock(void);

�
���� ����

Returns a double precision value for the elapsed time in seconds since the application
started running.

�
�	������
The spe_clock() routine measures the time interval in seconds (with a precision of
100 ns) since the application started running. When the SPE starts an application, it
sends to each program instance an offset time which the SPE uses (adds the value to
dclock()) to get the elapsed time since the application started running.



58

SPE_IDLE��
__________________________________________________________
spe_idle(): Goes to sleep until the system terminates (never returns).

���	
���
#include <spe.h>

void spe_idle(void);

������
�	�
Goes to sleep until the system terminates (never returns). Allows a program to stop
running without breaking the connections it has to other programs. Programs which
send their data to a program which has gone idle will continue to run (will not hang
even though the receiving program is not there to get the data). After the system ter-
minates, an idle program will still be able to report results collected from its perfor-
mance monitors.



59

SPE_INIT��
__________________________________________________________
spe_init(): Initializes the SPE interface. Blocks until all programs in an SPE application have
called this routine.
��	
��

#include <spe.h>

void spe_init(void);

��������
	
Initializes the SPE interface. Must be the first SPE routine called. This routine blocks
until all programs have initialized their SPE interface.

���
�
The SPE system will terminate if a program cannot initialize properly.



60

SPE_MALLOC(), SPE_FREE()
__________________________________________________________
spe_malloc(): Gets memory just like malloc(), but also generates report()  messages
indicating usage.
��������

#include <spe.h>

void *spe_malloc(
size_t size,
char *purpose_str);

����
�
��

size is the amount of memory in bytes to allocate.

purpose_str is the string containing the purpose of the allocation.

�
����� ����

Returns pointer to space allocated.

�
�	�������
Gets memory just like malloc() but also generates report()  messages when called
and at the end of a run that indicate memory usage or error conditions. If an error
condition occurs when spe_malloc() is called (i.e., not enough memory), a report()
is generated and the spe_terminate() routine is called. If no error occurs when
spe_malloc() is called, then a report()  message is generated (which the user can turn
on or off) that indicates the address of the memory allocated, the amount of memory
allocated and the amount of free memory left on the node. Also the user can request
that at the end of a run, a report()  message be generated indicating what memory was
allocated during the run. The argument purpose_str is a string supplied by the caller
indicating the purpose of the malloc. It is used in each of the report()  messages gen-
erated.

������
The SPE system will terminate and produce a report message if there is not enough
memory to allocate. The report message will look like:
   spe_malloc(): ERROR: Couldn’t malloc %d bytes of memory for

                 ’purpose_str’.  %d bytes of memory left.

�
����
The report category variable spe_malloc can be set so that the program instance will
generate a report()  each time spe_malloc() is called When it is called, it will write
to standard output:
   spe_malloc(): Malloced %d bytes of memory at address %d for

                 ’purpose_str’.  %d bytes of memory left.

The report category variable malloc_summary can be set so that the program
instance will generate a report at the end of the run indicating what memory was allo-
cated during the run. The report will look as follows:

   purpose_str    address  amount  memory_left   time
   ––––––––––––––––––––––––––––––––––––––––––––––––––
   ’purpose_str’   %d       %d      %d            %f
   ...



61

SPE_TERMINATE��
__________________________________________________________
spe_terminate(): Tells the SPE to terminate the application.

���	
���
#include <spe.h>

void spe_terminate(void);

������
�	�
Tells the SPE to terminate the application. The SPE will cause each program in the
system to terminate when the next SPE routine is called, or if already in an SPE rou-
tine, to terminate immediately. (It does not interrupt what the user’s program is cur-
rently doing.) Each program will execute an optionally defined user termination rou-
tine (see spe_terminate_define()), will generate any report()  summaries which
have been requested, and will then exit. Any program in the system can initiate a sys-
tem termination by calling this routine.



62

SPE_TERMINATE_DEFINE��
__________________________________________________________
spe_terminate_define(): Specifies a function to be executed when the program terminates.

�����	�
#include <spe.h>

void spe_terminate_define(
void (*term_function) (void));

����
�����

term_functionis the name of function to execute when the program terminates.
The function must have no arguments and return no value.

�����	�	��
Specifies a function to be executed when the program terminates. This allows a pro-
gram to execute critical cleanup code (such as closing files) when the program is ter-
minated by some other program.


